Multi - objective Evolutionary Membership Functions Tuning as a Post - processing Task in the Generation of Fuzzy Classification Systems

نویسندگان

  • Edward Hinojosa Cárdenas
  • Heloisa de Arruda Camargo
چکیده

In multi-objective evolutionary fuzzy systems, the process of tuning the membership functions plays an important role towards optimizing the systems accuracy. Although, the shape and position of the membership functions in the partition should not change too much with relation to the original partition, so that it does not lose its integrity. This paper presents and discusses multi-objective evolutionary tuning of membership functions of fuzzy classification systems as a post-processing task, after the fuzzy rule base has been generated also by a multiobjective evolutionary process. The learning of the rule base uses the iterative approach and a fixed data base. The fitness evaluation considers two objectives. The first objective is based on the integrity and consistency of each rule, and the second one is defined as the number of conditions of each rule. The tuning of the membership functions also considers two objectives. The first objective is the accuracy of the rule base, calculated as the classification rate and the second objective is the interpretability of the fuzzy partitions, defined as a semantic based interpretability index proposed in the literature. The NSGA-II algorithm is used in both stages. The paper evaluates the results obtained in several datasets, comparing the ones generated with and without the membership functions tuning process. This comparison shows that the tuning method can improve the accuracy, without decreasing the semantic and complexity interpretability of the fuzzy rule based classifier. Keywords—Multi-objective evolutionary fuzzy systems; membership function tuning; NSGA-II; fuzzy rule-based classification systems

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

A Fall Detection System based on the Type II Fuzzy Logic and Multi-Objective PSO Algorithm

The Elderly health is an important and noticeable issue; since these people are priceless resources of experience in the society. Elderly adults are more likely to be severely injured or to die following falls. Hence, fast detection of such incidents may even lead to saving the life of the injured person. Several techniques have been proposed lately for the fall detection of people, mostly cate...

متن کامل

An Approach to Reducing Overfitting in FCM with Evolutionary Optimization

Fuzzy clustering methods are conveniently employed in constructing a fuzzy model of a system, but they need to tune some parameters. In this research, FCM is chosen for fuzzy clustering. Parameters such as the number of clusters and the value of fuzzifier significantly influence the extent of generalization of the fuzzy model. These two parameters require tuning to reduce the overfitting in the...

متن کامل

Soft Computing Methods based on Fuzzy, Evolutionary and Swarm Intelligence for Analysis of Digital Mammography Images for Diagnosis of Breast Tumors

Soft computing models based on intelligent fuzzy systems have the capability of managing uncertainty in the image based practices of disease. Analysis of the breast tumors and their classification is critical for early diagnosis of breast cancer as a common cancer with a high mortality rate between women all around the world. Soft computing models based on fuzzy and evolutionary algorithms play...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014